Synthesis of a Carbocyclic Analogue of *N*-Acetylneuraminic Acid (Pseudo-*N*-acetylneuraminic Acid)

Seiichiro Ogawa,* Masaru Yoshikawa and Toshiaki Taki

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223, Japan

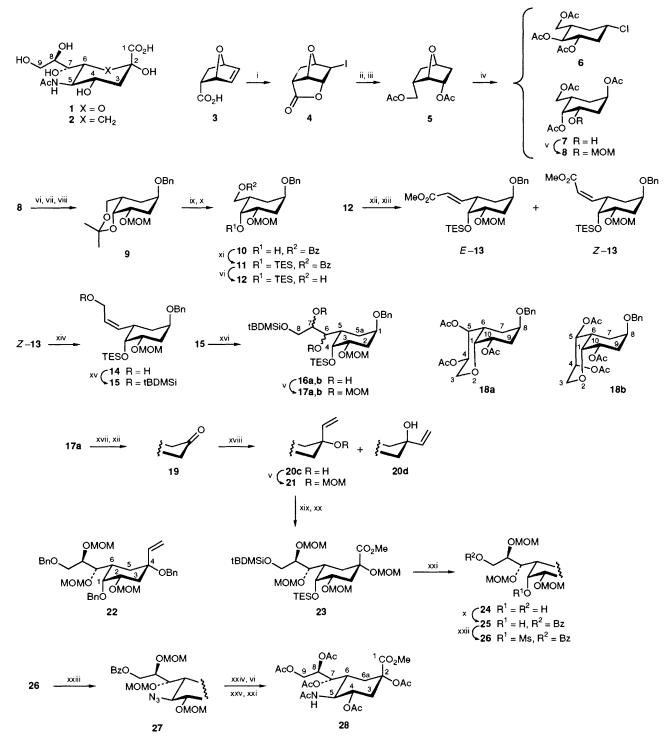
A carbocyclic analogue of *N*-acetylneuraminic acid was synthesized from the Diels–Alder *endo*-adduct of furan and acrylic acid, and its ammonium salt was subjected to biological assay.

Extensive synthetic studies of many kinds of analogues^{1,2} and derivatives³ of *N*-acetylneuraminic acid (NANA) 1 both as potential inhibitors of sialidases and as probes for the elucidation of involvement in enzymic sialic acid metabolism have been carried out. Since the analogues,⁴ which contain a nitrogen atom instead of the pyranoid oxygen atom showed some activity, we were interested in a synthesis of the carbocyclic analogue 2, *N*-acetyl-6a-carbaneuraminic acid, of 1. Starting from the *endo*-adduct 3 of furan and acrylic acid, per-*O*-acetyl derivative 28 of the methyl ester of 2 was successfully obtained in 21 steps reaction, and the ammonium salt of 2 was assayed for neuraminidases.

Iodolactonization of the optically resolved *endo*-adduct (+)- 3^5 gave 4^{\dagger} (86%), $[\alpha]^{25}_{D}$ -113 (c 1.04 in CHCl₃), which

was reduced with lithium aluminium hydride in tetrahydrofuran (THF) to afford, after acetylation, 5 (61%). Cleavage of the epoxide ring of 5 with titanium tetrachloride in CH_2Cl_2 containing acetic acid afforded the triacetate 7 (37%), along with the chloride 6 (19%). The hydroxy group of 7 was first protected with methoxymethyl (MOM) group $(\rightarrow 8, 93\%)$ and 8 was then deacylated, isopropylidenated, and benzylated to give 9 (90% overall yield). Removal of the isopropylidene group of 9 followed by selective benzoylation of the primary hydroxy gave 10 (96% overall yield), which was blocked with triethylsilyl (TES) group (\rightarrow 11, 97%) and then O-debenzovlated to give 12 (87%). Oxidation of 12 with pyridinium chlorochromate (PCC) gave the aldehyde, successive Horner-Emmons alkenylation of which with trimethylacetylphosphonate in THF in the presence of potassium hexamethyldisilazane gave the propenates E-13 (18%) and Z-13 (68%). The stereochemistry of the isomers were deduced on the basis of the ¹H NMR spectral signals due to the alkenic protons, which resonated at δ 5.80 (2-H) and 7.00 (3-H) in E-13, and at δ 5.78 (2-H) and 6.29 (3-H) in Z-13.

Reduction of the major Z-13 with diisobutylaluminium hydride (\rightarrow 14),‡ followed by protection of the primary hydroxy with *tert*-butyldimethylsilyl (tBDMSi) group, gave 15 (97%). Osmium oxidation of 15 in the presence of *N*-methylmorphorine *N*-oxide (NMO) gave nonselectively two *cis*-diols 16a (44%) and 16b (48%), which were converted into the respective trimethoxymethyl ethers 17a and b, quantitatively.


In order to elucidate the configurations of **16a** and **b**, the following transformations were carried out. After removal of

[†] All new compounds were characterized by 90 or 270 MHz ¹H NMR, IR and elemental analyses. Selected ¹H NMR data (270 MHz, CDCl₃) (inter alia), for 18a: 8 2.26 (1 H, br d, 6-H), 3.64 [1 H, t (apparent), J 11 Hz, 3ax-H], 3.90 (1 H, br t, 8-H), 3.93 (1 H, dd, J 11 5.9 Hz, 3eq-H) and 4.08 (1 H, br s, 1-H). For 18b: δ 2.40 (1 H, m, 6-H), 3.68 (1 H, dd, J 13.2, 1.5 Hz, 3ax-H), 3.79 (1 H, br s, 1-H), 3.91 (1 H, br t, 8-H), 4.12 (1 H, dd, J 13.2, 1.5 Hz, 3eq-H) and 5.06 (1 H, dd, J 5.1, 4 Hz, 5-H). For 22: 8 1.69 (1 H, m, 6-H), 1.85 (1 H, dd, 5ax-H), 2.15 and 2.15 (each 1 H, 2 dd, J 12.1, 3.3 Hz, 3eq-H, 5eq-H), 2.24 [1 H, t (apparent), J 12.1, 3ax-H], 3.54 (1 H, ddd, J 12.1, 3.3, ~1 Hz, 2-H), 3.80 (1 H, br s, 1-H), 5.35 (1 H, dd, J 17.6, 1.1 Hz, CH=CH₂ trans), 5.40 (1 H, dd, J 11, 1.1 Hz, CH=CH₂ cis) and 5.72 (1 H, dd, J17.6, 11 Hz, CH=CH₂). For 28: δ 1.71 [1 H, t (apparent), J 13.2 Hz, 6a.ax-H], 1.79 [1 H, t (apparent), J 12.5 Hz, 3ax-H], 1.91, 2.01, 2.04, 2.06, 2.10 and 2.11 (each 3 H, 6 s, 6 Ac), 2.11 (1 H, m, 6-H), 2.54 (1 H, ddd, J 13.2, 2.6 Hz, 6a.eq-H), 2.77 (1 H, ddd, J 12.5, 2.6, 2.2 H, add, 5 152, 210 12, 5 100, 210 11, 210 11, 20 9'-H), 5.20 (3 H, m, 4-H, 8-H, NH) and 5.24 (1 H, dd, J 8.4, 2.6 Hz, 7-H).

[‡] The structure of Z-13 was also verified by the following transformation: deprotection of the silyl group of 14 gave the allyl alcohol (81%), which was oxidized with manganese dioxide to give rise to the α ,β-unsaturated δ-lactone (80%); IR v_{max} cm⁻¹ 1720 (C=O).

the tBDMSi group of **17a** with tetra-n-butylammonium fluoride, the resulting alcohol was converted into the toluene*p*-sulfonate, cyclization of which with methanolic sodium methoxide at 50 °C afforded the bicyclic compound that was characterized by converting into the pentaacetate **18a** (53% overall yield) by acid hydrolysis with HCl (2 mol dm⁻³ 60 °C) and acetylation. Comparison of the ¹H NMR data of **18a** and the other isomer **18b** derived similarly from **17b** allowed their structures to be established as depicted in Scheme 1. The configurations of C-6,7 of **16a** were, therefore, shown to correspond to those of C-7,8 of **1**.

Hydrogenolysis of 17a with Pd/C in ethanol effected the removal of the *O*-benzyl group, affording the alcohol which was successively oxidized with PCC to give the ketone 19. Grignard reaction of 19 with vinylmagnesium bromide in THF yielded 20c and d in 54 and 9% yields based on 17a,

Scheme 1 MOM = MeOCH₂, Bn = CH₂Ph, TES = Et₃Si, Ts = *p*-MeC₆H₄SO₂, tBDMSi = Bu⁴Me₂Si, TMS = Me₃Si, Ms = MeSO₂, Bz = COPh. *Reagents and conditions*: i, NaHCO₃, I₂, THF-H₂O (1:5); ii, LiAlH₄, THF, reflux; iii, Ac₂O, pyridine; iv, TiCl₄, AcOH, CH₂Cl₂, room temp.; v, *N*,*N*-Pr¹₂EtN, MOMCl, CH₂Cl₂, reflux; vi, MeONa, MeOH, room temp.; vii, Me₂C(OMe)₂, DMF; viii, NaH, BnBr, DMF, room temp.; ix, AcOH-H₂O (4:1), room temp.; x, BzCl, pyridine; xi, TESCl, pyridine, 60 °C; xii, PCC, CH₂Cl₂; xiii, (MeO)₂P(O)CH₂CO₂Me, 18-crown-6, (TMS)₂NK, THF, -78 °C; xiv, Bu¹₂AlH, CH₂Cl₂, -78 °C; xv, 4-*N*-*N*-dimethylamino pyridine, Et₃N, tBDMSiCl, CH₂Cl₂, room temp.; xix, O₃, MeOH, -78 °C; Na₂HPO₄, NaClO₂, NH₂SO₂OH, -78 °C; xx, CH₂N₂, Et₂O, 0 °C; xxi, BuⁿNF, THF, 0 °C; xxii, MsCl, pyridine, room temp.; xxiii, NaN₃, DMF, 90 °C; xxiv, H₂, Raney Ni, Ac₂O, EtOH; xvv, HCI aq., 60 °C.

respectively. The ¹H NMR spectrum of the tribenzyl ether **22**, derived from the major **20**c by desilylation and subsequent benzylation, was easily amenable to observation of the NOE (nuclear Overhauser effect) between the signals for 3-H and 5-H, and that for the alkenyl methine proton, supporting the proposed structure of **20**c.

Compound 20c was then converted into the methoxymethyl ether 21 (93%), which was subjected to ozonolysis in methanol at -78 °C to give, after the usual processing and subsequent esterification with diazomethane, the methyl ester 23 (90%). Deblocking of the triethylsilyl group ($\rightarrow 24, 79\%$), followed by selective benzoylation of the primary hydroxy ($\rightarrow 25, 89\%$) and successive mesylation, gave 26 (88%). Treatment of 26 with sodium azide in N,N-dimethylformamide (DMF) (90 $^{\circ}$ C) caused a preferential $S_N 2$ reaction to give the azide 27 (78%), hydrogenation of which with Raney nickel T-4 in methanol, followed by acid hydrolysis with hydrochloric acid (2 mol dm-3, 60 °C) afforded the pseudo-neuraminic acid hydrochloride, which, on conventional acetylation and esterification, was converted into the methyl hexa-N,O-acetyl derivative **28** (80% overall yield), $[\alpha]^{27}_{D}$ + 10 (c 0.34 in CHCl₃). The ¹H NMR spectrum of 28 fully supported the assigned structure.

The ammonium salt of **2** was obtained by hydrolysis of **28** with sodium hydroxide (0.5 mol dm⁻³) in THF–H₂O (1:1) at room temp. for 2 h, neutralisation with Amberlite IR-120B

(H⁺) resin, and successive treatment with aqueous ammonia. About 5 mg of compound **2** was obtained from the adduct **3** (*ca.* 0.6 g, less than 0.7% overall yield, calculated) and subjected to inhibition assay. It showed *ca.* 30% inhibition against sialidase from *Streptococcus* sp. at the final concentration of 0.1 mmol dm⁻¹, and almost no inhibitory activity against that from *Arthrobacter ureafaciens*.

We thank Mr H. Arita and Mr H. Hata for their elemental analyses, and Dr M. Ito (MECT Corporation, Tokyo, Japan) for carrying out bioassays.

Received, 30th October 1991; Com. 1/05524K

References

- 1 R. Wyler and A. Vasella, *Helv. Chim. Acta*, 1991, 74, 451, and references cited therein.
- 2 H. Mack and R. Bossmer, Tetrahedron Lett., 1987, 28, 191.
- 3 H. Hartmann and E. Zbiral, *Liebigs Ann. Chem.*, 1991, 795, and references cited therein.
- 4 F. Baumberger, A. Vasella and R. Schauer, *Helv. Chim. Acta*, 1988, **71**, 429; B. I. Glanzer, Z. Gyorgydeak, B. Bernet and A. Vasella, *Helv. Chim. Acta*, 1991, **74**, 343.
- 5 S. Ogawa, Y. Iwasawa, T. Nose, T. Suami, S. Ohba, M. Ito and Y. Saito, J. Chem. Soc., Perkin Trans. 1, 1985, 903.